کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4664454 1345297 2007 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comprehensive proof of the Greenberger–Horne–Zeilinger theorem for the four-qubit system
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
A comprehensive proof of the Greenberger–Horne–Zeilinger theorem for the four-qubit system
چکیده انگلیسی

Greenberger–Horne–Zeilinger (GHZ) theorem asserts that there is a set of mutually commuting nonlocal observables with a common eigenstate on which those observables assume values that refute the attempt to assign values only required to have them by the local realism of Einstein, Podolsky, and Rosen (EPR). It is known that for a three-qubit system, there is only one form of the GHZ-Mermin-like argument with equivalence up to a local unitary transformation, which is exactly Mermin's version of the GHZ theorem. This article for a four-qubit system, which was originally studied by GHZ, the authors show that there are nine distinct forms of the GHZ-Mermin-like argument. The proof is obtained using certain geometric invariants to characterize the sets of mutually commuting nonlocal spin observables on the four-qubit system. It is proved that there are at most nine elements (except for a different sign) in a set of mutually commuting nonlocal spin observables in the four-qubit system, and each GHZ-Mermin-like argument involves a set of at least five mutually commuting four-qubit nonlocal spin observables with a GHZ state as a common eigenstate in GHZ's theorem. Therefore, we present a complete construction of the GHZ theorem for the four-qubit system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Mathematica Scientia - Volume 27, Issue 4, October 2007, Pages 753-776