کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665041 1633787 2016 45 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Open Gromov–Witten disk invariants in the presence of an anti-symplectic involution
ترجمه فارسی عنوان
گارووا ویتن را با استفاده از یک حلقه ضد نفوذی باز کنید
کلمات کلیدی
گاروف ویتن وارثان باز و واقعی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

For a symplectic manifold with an anti-symplectic involution having non-empty fixed locus, we construct a model of the moduli space of real sphere maps out of moduli spaces of decorated disk maps and give an explicit expression for its first Stiefel–Whitney class. As a corollary, we obtain a large number of examples, which include all odd-dimensional projective spaces and many complete intersections, for which many types of real moduli spaces are orientable. For these manifolds, we define open Gromov–Witten invariants with no restriction on the dimension of the manifolds or the type of the constraints if there are no boundary marked points; a WDVV-type recursion obtained in a sequel computes these invariants for many real symplectic manifolds. If there are boundary marked points, we define the invariants under some restrictions on the allowed boundary constraints, even though the moduli spaces are not orientable in these cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 301, 1 October 2016, Pages 116–160
نویسندگان
,