کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665047 1633787 2016 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Much ado about Mathieu
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Much ado about Mathieu
چکیده انگلیسی

Eguchi, Ooguri and Tachikawa observed that the coefficients of the elliptic genus of type II string theory on K3 surfaces appear to be dimensions of representations of the largest Mathieu group. Subsequent work by several people established a candidate for the elliptic genus twisted by each element of M24M24. In this paper we prove that the resulting sequence of class functions are true characters of M24M24, proving the Eguchi–Ooguri–Tachikawa ‘Mathieu Moonshine’ conjecture. The integrality of multiplicities is proved using a small generalisation of Sturm's Theorem, while positivity involves a modification of a method of Hooley, for finding an effective bound on a family of Selberg–Kloosterman zeta functions at s=3/4s=3/4. We also prove the evenness property of the multiplicities, as conjectured by several authors, and use that to investigate the proposal of Gaberdiel–Hohenegger–Volpato that Mathieu Moonshine lifts to the Conway groups Co0Co0 and Co1Co1. We identify the role group cohomology plays in both Mathieu Moonshine and Monstrous Moonshine; in particular this gives a cohomological interpretation for the non-Fricke elements in Norton's Generalised Monstrous Moonshine conjecture, and gives a lower bound for H3(BCo1;C×)H3(BCo1;C×).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 301, 1 October 2016, Pages 322–358
نویسندگان
,