کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665167 1633794 2016 66 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Skeletons and tropicalizations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Skeletons and tropicalizations
چکیده انگلیسی

Let K   be a complete, algebraically closed non-archimedean field with ring of integers K∘K∘ and let X be a K  -variety. We associate to the data of a strictly semistable K∘K∘-model XX of X plus a suitable horizontal divisor H   a skeleton S(X,H)S(X,H) in the analytification of X. This generalizes Berkovich's original construction by admitting unbounded faces in the directions of the components of H  . It also generalizes constructions by Tyomkin and Baker–Payne–Rabinoff from curves to higher dimensions. Every such skeleton has an integral polyhedral structure. We show that the valuation of a non-zero rational function is piecewise linear on S(X,H)S(X,H). For such functions we define slopes along codimension one faces and prove a slope formula expressing a balancing condition on the skeleton. Moreover, we obtain a multiplicity formula for skeletons and tropicalizations in the spirit of a well-known result by Sturmfels–Tevelev. We show a faithful tropicalization result saying roughly that every skeleton can be seen in a suitable tropicalization. We also prove a general result about existence and uniqueness of a continuous section to the tropicalization map on the locus of tropical multiplicity one.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 294, 14 May 2016, Pages 150–215
نویسندگان
, , ,