کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665171 1633794 2016 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deligne–Lusztig constructions for division algebras and the local Langlands correspondence
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Deligne–Lusztig constructions for division algebras and the local Langlands correspondence
چکیده انگلیسی

In 1979, Lusztig proposed a cohomological construction of supercuspidal representations of reductive p-adic groups, analogous to Deligne–Lusztig theory for finite reductive groups. In this paper we establish a new instance of Lusztig's program. Precisely, let D be the quaternion algebra over a local non-Archimedean field K of positive characteristic, and let X be the p  -adic Deligne–Lusztig ind-scheme associated to D×D×. There is a natural correspondence between quasi-characters of the (multiplicative group of the) unramified quadratic extension of K   and representations of D×D× given by θ↦Hi(X)[θ]θ↦Hi(X)[θ]. We show that this correspondence is a bijection (after a mild restriction of the domain and target), and matches the bijection given by local Langlands and Jacquet–Langlands.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 294, 14 May 2016, Pages 332–383
نویسندگان
,