کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4665194 | 1633795 | 2016 | 75 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On a new method of proving Gevrey hypoellipticity for certain sums of squares
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider an operator being a sum of squares of vector fields. It has the form, p,r∈Np,r∈N,P(x,Dx,Dy,Dt)=Dx2+x2(p−1)(Dy−xrDt)2. This type of operator is C∞C∞ hypoelliptic by Hörmander's theorem, [18]. Its analytic or Gevrey hypoellipticity has then been studied by a number of authors and is relevant in relation to the Treves conjecture. The Poisson–Treves stratification of P includes both symplectic and non-symplectic strata.In this paper we show that P is Gevrey (p+r)/p(p+r)/p hypoelliptic, by constructing a parametrix whose symbol belongs to some exotic classes. One can also show that this number is optimal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 293, 30 April 2016, Pages 146–220
Journal: Advances in Mathematics - Volume 293, 30 April 2016, Pages 146–220
نویسندگان
Antonio Bove, Marco Mughetti,