کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665217 1633799 2016 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solutions of some Monge–Ampère equations with isolated and line singularities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Solutions of some Monge–Ampère equations with isolated and line singularities
چکیده انگلیسی

In this paper, we study existence, regularity, classification, and asymptotic behaviors of solutions of some Monge–Ampère equations with isolated and line singularities. We classify all solutions of det⁡∇2u=1det⁡∇2u=1 in RnRn with one puncture point. This can be applied to characterize ellipsoids, in the same spirit of Serrin's overdetermined problem for the Laplace operator. In the case of having k   non-removable singular points for k>1k>1, modulo affine equivalence the set of all generalized solutions can be identified as an explicit orbifold. We also establish existence of global solutions with general singular sets, regularity properties, and optimal estimates of the second order derivatives of generalized solutions near the singularity consisting of a point or a straight line. The geometric motivation comes from singular semi-flat Calabi–Yau metrics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 289, 5 February 2016, Pages 114–141
نویسندگان
, ,