کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665269 1633805 2015 58 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The supercritical regime in the normal matrix model with cubic potential
ترجمه فارسی عنوان
رژیم فوق بحرانی در مدل ماتریس طبیعی با پتانسیل مکعبی
کلمات کلیدی
مدل ماتریس عادی، چند جملهای چندگانه متعامد، شرایط بوترو، مشکل ریمان-هیلبرت، تجزیه و تحلیل تدریجی فرود
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

The normal matrix model with a cubic potential is ill-defined and it develops a critical behavior in finite time. We follow the approach of Bleher and Kuijlaars to reformulate the model in terms of orthogonal polynomials with respect to a Hermitian form. This reformulation was shown to capture the essential features of the normal matrix model in the subcritical regime, namely that the zeros of the polynomials tend to a number of segments (the motherbody) inside a domain (the droplet) that attracts the eigenvalues in the normal matrix model.In the present paper we analyze the supercritical regime and we find that the large n   behavior is described by the evolution of a spectral curve satisfying the Boutroux condition. The Boutroux condition determines a system of contours Σ1Σ1, consisting of the motherbody and whiskers sticking out of the domain. We find a second critical behavior at which the original motherbody shrinks to a point at the origin and only the whiskers remain.In the regime before the second criticality we also give strong asymptotics of the orthogonal polynomials by means of a steepest descent analysis of a 3×33×3 matrix valued Riemann–Hilbert problem. It follows that the zeros of the orthogonal polynomials tend to Σ1Σ1, with the exception of at most three spurious zeros.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 283, 1 October 2015, Pages 530–587
نویسندگان
, ,