کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665285 1633808 2015 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Muckenhoupt weights and Lindelöf theorem for harmonic mappings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Muckenhoupt weights and Lindelöf theorem for harmonic mappings
چکیده انگلیسی

We extend the result of Lavrentiev which asserts that the harmonic measure and the arc-length measure are A∞A∞ equivalent in a chord-arc Jordan domain. By using this result we extend the classical result of Lindelöf to the class of quasiconformal (q.c.) harmonic mappings by proving the following assertion. Assume that f is a quasiconformal harmonic mapping of the unit disk U onto a Jordan domain. Then the function A(z)=arg⁡(∂φ(f(z))/z)A(z)=arg⁡(∂φ(f(z))/z) where z=reiφz=reiφ, is well-defined and smooth in U⁎={z:0<|z|<1}U⁎={z:0<|z|<1} and has a continuous extension to the boundary of the unit disk if and only if the image domain has C1C1 boundary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 280, 6 August 2015, Pages 301–321
نویسندگان
,