کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665303 1633804 2015 58 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Littlewood–Richardson coefficients for reflection groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Littlewood–Richardson coefficients for reflection groups
چکیده انگلیسی

In this paper we explicitly compute all Littlewood–Richardson coefficients for semisimple and Kac–Moody groups G, that is, the structure constants (also known as the Schubert structure constants  ) of the cohomology algebra H⁎(G/P,C)H⁎(G/P,C), where P is a parabolic subgroup of G. These coefficients are of importance in enumerative geometry, algebraic combinatorics and representation theory. Our formula for the Littlewood–Richardson coefficients is purely combinatorial and is given in terms of the Cartan matrix and the Weyl group of G  . However, if some off-diagonal entries of the Cartan matrix are 0 or −1, the formula may contain negative summands. On the other hand, if the Cartan matrix satisfies aijaji≥4aijaji≥4 for all i, j, then each summand in our formula is nonnegative that implies nonnegativity of all Littlewood–Richardson coefficients. We extend this and other results to the structure coefficients of the T  -equivariant cohomology of flag varieties G/PG/P and Bott–Samelson varieties Γi(G)Γi(G).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 284, 22 October 2015, Pages 54–111
نویسندگان
, ,