کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4665347 | 1633807 | 2015 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The stabilized set of p's in Krivine's theorem can be disconnected
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For any closed subset F of [1,∞][1,∞] which is either finite or consists of the elements of an increasing sequence and its limit, a reflexive Banach space X with a 1-unconditional basis is constructed so that in each block subspace Y of X , ℓpℓp is finitely block represented in Y if and only if p∈Fp∈F. In particular, this solves the question as to whether the stabilized Krivine set for a Banach space had to be connected. We also prove that for every infinite dimensional subspace Y of X there is a dense subset G of F such that the spreading models admitted by Y are exactly the ℓpℓp for p∈Gp∈G.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 281, 20 August 2015, Pages 553–577
Journal: Advances in Mathematics - Volume 281, 20 August 2015, Pages 553–577
نویسندگان
Kevin Beanland, Daniel Freeman, Pavlos Motakis,