کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665386 1633806 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The odd case of Rota's bases conjecture
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The odd case of Rota's bases conjecture
چکیده انگلیسی

The paper links four conjectures:(1)(Rota's bases conjecture): For any system A=(A1,…,An) of non-singular real valued matrices the multiset of all columns of matrices in AA can be decomposed into n   independent systems of representatives of AA.(2)(Alon–Tarsi): For even n  , the number of even n×nn×n Latin squares differs from the number of odd n×nn×n Latin squares.(3)(Stones–Wanless, Kotlar): For all n  , the number of even n×nn×n Latin squares with the identity permutation as first row and first column differs from the number of odd n×nn×n Latin squares of this type.(4)(Aharoni–Berger): Let MM and NN be two matroids on the same vertex set, and let A1,…,AnA1,…,An be sets of size n+1n+1 belonging to M∩NM∩N. Then there exists a set belonging to M∩NM∩N meeting all AiAi. Huang and Rota [8] and independently Onn [11] proved that for any n (2) implies (1). We prove equivalence between (2) and (3). Using this, and a special case of (4), we prove the Huang–Rota–Onn theorem for n   odd and a restricted class of input matrices: assuming the Alon–Tarsi conjecture for n−1n−1, Rota's conjecture is true for any system of non-singular real valued matrices where one of them is non-negative and the remaining have non-negative inverses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 282, 10 September 2015, Pages 427–442
نویسندگان
, ,