کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665436 1633814 2015 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric construction of Hopf cyclic characteristic classes
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Geometric construction of Hopf cyclic characteristic classes
چکیده انگلیسی

In earlier joint work with A. Connes on transverse index theory on foliations, cyclic cohomology adapted to Hopf algebras has emerged as a decisive tool in deciphering the total index class of the hypoelliptic signature operator. We have found a Hopf algebra HnHn, playing the role of a ‘quantum structure group’ for the ‘space of leaves’ of a codimension n   foliation, whose Hopf cyclic cohomology is canonically isomorphic to the Gelfand–Fuks cohomology of the Lie algebra of formal vector fields. However, with a few low-dimensional exceptions, no explicit construction was known for its Hopf cyclic classes. This paper provides an effective method for constructing the Hopf cyclic cohomology classes of HnHn and of HnHn relative to OnOn, in the spirit of the Chern–Weil theory, which completely elucidates their relationship with the characteristic classes of foliations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 274, 9 April 2015, Pages 651–680
نویسندگان
,