کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665450 1633811 2015 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic topological methods for the supercritical Q-curvature problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Algebraic topological methods for the supercritical Q-curvature problem
چکیده انگلیسی

We study the problem of existence of conformal metrics with prescribed Q-curvature on closed four-dimensional Riemannian manifolds. This problem has a variational structure, and in the case of interest here, it is noncompact in the sense that accumulations points of some noncompact flow lines of a pseudogradient of the associated Euler–Lagrange functional, the so-called true critical points at infinity of the associated variational problem, occur. Using the characterization of the critical points at infinity of the associated variational problem which is established in [42], combined with some arguments from Morse theory, some algebraic topological methods, and some tools from dynamical system originating from Conley's isolated invariant sets and isolated blocks theory, we derive a new kind of existence results under an algebraic topological hypothesis involving the topology of the underling manifold, stable and unstable manifolds of some of the critical points at infinity of the associated Euler–Lagrange functional.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 277, 4 June 2015, Pages 56–99
نویسندگان
,