کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665524 1633815 2015 56 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions
ترجمه فارسی عنوان
نظریه طیفی از اپراتورهای خطی در فضاهای هیلبرت جعلی تحت شرایط تحلیلی
کلمات کلیدی
مقدار خاص تعریف شده، قطب رزونانس، فضای هیلبرت جعلی گلفاند سه گانه، عملکرد عمومی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

A spectral theory of linear operators on rigged Hilbert spaces (Gelfand triplets) is developed under the assumptions that a linear operator T   on a Hilbert space HH is a perturbation of a selfadjoint operator, and the spectral measure of the selfadjoint operator has an analytic continuation near the real axis in some sense. It is shown that there exists a dense subspace X   of HH such that the resolvent (λ−T)−1ϕ(λ−T)−1ϕ of the operator T   has an analytic continuation from the lower half plane to the upper half plane as an X′X′-valued holomorphic function for any ϕ∈Xϕ∈X, even when T has a continuous spectrum on R, where X′X′ is a dual space of X  . The rigged Hilbert space consists of three spaces X⊂H⊂X′X⊂H⊂X′. A generalized eigenvalue and a generalized eigenfunction in X′X′ are defined by using the analytic continuation of the resolvent as an operator from X   into X′X′. Other basic tools of the usual spectral theory, such as a spectrum, resolvent, Riesz projection and semigroup are also studied in terms of a rigged Hilbert space. They prove to have the same properties as those of the usual spectral theory. The results are applied to estimate asymptotic behavior of solutions of evolution equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 273, 19 March 2015, Pages 324–379
نویسندگان
,