کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665600 1633819 2015 91 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hamiltonian reduction and nearby cycles for mirabolic DD-modules
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Hamiltonian reduction and nearby cycles for mirabolic DD-modules
چکیده انگلیسی

We study holonomic DD-modules on SLn(C)×CnSLn(C)×Cn, called mirabolic modules, analogous to Lusztig's character sheaves. We describe the supports of simple mirabolic modules. We show that a mirabolic module is killed by the functor of Hamiltonian reduction from the category of mirabolic modules to the category of representations of the trigonometric Cherednik algebra if and only if the characteristic variety of the module is contained in the unstable locus.We introduce an analogue of Verdier's specialization functor for representations of Cherednik algebras which agrees, on category OO, with the restriction functor of Bezrukavnikov and Etingof. In type A  , we also consider a Verdier specialization functor on mirabolic DD-modules. We show that Hamiltonian reduction intertwines specialization functors on mirabolic DD-modules with the corresponding functors on representations of the Cherednik algebra. This allows us to apply known Hodge-theoretic purity results for nearby cycles in the setting considered by Bezrukavnikov and Etingof.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 269, 10 January 2015, Pages 71–161
نویسندگان
, ,