کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665667 1633821 2014 55 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Poincaré duality, Hilbert complexes and geometric applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Poincaré duality, Hilbert complexes and geometric applications
چکیده انگلیسی

Let (M,g)(M,g) be an open, oriented and incomplete riemannian manifold. The aim of this paper is to study the following two sequences of L2L2-cohomology groups:1.H2,m→Mi(M,g) defined as the image (H2,mini(M,g)→H2,maxi(M,g))2.H¯2,m→Mi(M,g) defined as the image (H¯2,mini(M,g)→H¯2,maxi(M,g)). We show, under suitable hypothesis, that the first sequence is the cohomology of a Hilbert complex which contains the minimal one and is contained in the maximal one. In particular this leads us to prove a Hodge theorem for these groups. We also show that when the second sequence is finite dimensional then Poincaré duality holds and that, with the same assumptions, when dim(M)=4ndim(M)=4n then we can employ H¯2,m→M2n(M,g) in order to define an L2L2-signature on M  . We prove several applications to the intersection cohomology of compact smoothly stratified pseudomanifolds and we get some results about the Friedrichs extension ΔiF of ΔiΔi.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 267, 20 December 2014, Pages 121–175
نویسندگان
,