کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665703 1633826 2014 58 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tau function and Chern–Simons invariant
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Tau function and Chern–Simons invariant
چکیده انگلیسی

We define a Chern–Simons invariant for Schottky hyperbolic 3-manifolds of infinite volume. We then prove an expression relating the Bergman tau function on a fiber space over the Teichmüller space to the lifting of the function F defined by Zograf on Teichmüller space, and a holomorphic function on this space which we introduce. If the point in this space corresponds to a marked Riemann surface X, then this function is constructed from the renormalized volume and our Chern–Simons invariant for the bounding 3-manifold of X given by Schottky uniformization, together with a regularized Polyakov integral. We also obtain a relation between the Chern–Simons invariant and the eta invariant of the bounding 3-manifold, with defect given by the phase of the Bergman tau function of X.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 262, 10 September 2014, Pages 1–58
نویسندگان
, ,