کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665729 1633826 2014 72 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Floer theory for negative line bundles via Gromov–Witten invariants
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Floer theory for negative line bundles via Gromov–Witten invariants
چکیده انگلیسی

We prove that the GW theory of negative line bundles M=Tot(L→B)M=Tot(L→B) determines the symplectic cohomology: indeed SH⁎(M)SH⁎(M) is the quotient of QH⁎(M)QH⁎(M) by the kernel of a power of quantum cup product by c1(L)c1(L). We prove this also for negative vector bundles and the top Chern class.We calculate SH⁎SH⁎ and QH⁎QH⁎ for O(−n)→CPmO(−n)→CPm. For example: for O(−1)O(−1), M   is the blow-up of Cm+1Cm+1 at the origin and SH⁎(M)SH⁎(M) has rank m.We prove Kodaira vanishing: for very negative L  , SH⁎=0SH⁎=0; and Serre vanishing: if we twist a complex vector bundle by a large power of L  , SH⁎=0SH⁎=0.Observe SH⁎(M)=0SH⁎(M)=0 iff c1(L)c1(L) is nilpotent in QH⁎(M)QH⁎(M). This implies Oancea's result: ωB(π2(B))=0⇒SH⁎(M)=0ωB(π2(B))=0⇒SH⁎(M)=0.We prove the Weinstein conjecture for any contact hypersurface surrounding the zero section of a negative line bundle.For symplectic manifolds X   conical at infinity, we build a homomorphism from π1(Hamℓ(X,ω))π1(Hamℓ(X,ω)) to invertibles in SH⁎(X,ω)SH⁎(X,ω). This is similar to Seidel's representation for closed X  , except now they are not invertibles in QH⁎(X,ω)QH⁎(X,ω).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 262, 10 September 2014, Pages 1035–1106
نویسندگان
,