کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665738 1633827 2014 46 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Density of rational points on del Pezzo surfaces of degree one
ترجمه فارسی عنوان
تراکم نقاط منطقی در سطوح دلپذو درجه اول
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی
We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration S⇢P1 induced by the anticanonical map has a nodal fiber over a k-rational point of P1. It also suffices to require the existence of a point in S(k) that does not lie on six exceptional curves of S and that has order 3 on its fiber of the elliptic fibration. This allows us to show that within a parameter space for del Pezzo surfaces of degree 1 over R, the set of surfaces S defined over Q for which the set S(Q) is Zariski dense, is dense with respect to the real analytic topology. We also include conditions that may be satisfied for every del Pezzo surface S and that can be verified with a finite computation for any del Pezzo surface S that does satisfy them.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 261, 20 August 2014, Pages 154-199
نویسندگان
, ,