کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665759 1633829 2014 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Poincaré series of modules over compressed Gorenstein local rings
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Poincaré series of modules over compressed Gorenstein local rings
چکیده انگلیسی

Given two positive integers e and s we consider Gorenstein Artinian local rings R   whose maximal ideal mm satisfies ms≠0=ms+1ms≠0=ms+1 and rankR/m(m/m2)=erankR/m(m/m2)=e. We say that R is a compressed Gorenstein local ring   when it has maximal length among such rings. It is known that generic Gorenstein Artinian algebras are compressed. If s≠3s≠3, we prove that the Poincaré series of all finitely generated modules over a compressed Gorenstein local ring are rational, sharing a common denominator. A formula for the denominator is given. When s is even this formula depends only on the integers e and s  . Note that for s=3s=3 examples of compressed Gorenstein local rings with transcendental Poincaré series exist, due to Bøgvad.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 259, 10 July 2014, Pages 421–447
نویسندگان
, ,