کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665789 1633831 2014 97 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bivariance, Grothendieck duality and Hochschild homology, II: The fundamental class of a flat scheme-map
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Bivariance, Grothendieck duality and Hochschild homology, II: The fundamental class of a flat scheme-map
چکیده انگلیسی

Fix a noetherian scheme S  . For any flat map f:X→Yf:X→Y of separated essentially-finite-type perfect S  -schemes we define a canonical derived-category map cf:HX→f!HYcf:HX→f!HY, the fundamental class of f  , where HZHZ is the (pre-)Hochschild complex of an S-scheme Z   and f!f! is the twisted inverse image coming from Grothendieck duality theory. When Y=SY=S and f is essentially smooth of relative dimension n  , this gives an isomorphism Ωfn[n]=H−n(HX)[n]⟶∼f!OS. We focus mainly on transitivity   of cc vis-à-vis compositions X→Y→ZX→Y→Z, and on the compatibility of cc with flat base change  . These properties imply that cc orients the flat maps in the bivariant theory of part I [1], compatibly with essentially étale base change. Furthermore, cc leads to a dual oriented bivariant theory, whose homology is the classical Hochschild homology of flat S  -schemes. When Y=SY=S, cc is used to define a duality map dX:HX→RHom(HX,f!OS)dX:HX→RHom(HX,f!OS), an isomorphism if f is essentially smooth. These results apply in particular to flat essentially-finite-type maps of noetherian rings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 257, 1 June 2014, Pages 365–461
نویسندگان
, , ,