کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4665946 1633839 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower Ricci curvature, branching and the bilipschitz structure of uniform Reifenberg spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Lower Ricci curvature, branching and the bilipschitz structure of uniform Reifenberg spaces
چکیده انگلیسی

We study here limit spaces (Mα,gα,pα)→GH(Y,dY,p), where the MαMα have a lower Ricci curvature bound and are volume noncollapsed. Such limits Y   may be quite singular, however it is known that there is a subset of full measure R(Y)⊆YR(Y)⊆Y, called regular   points, along with coverings by the almost regular points ⋂ϵ⋃rRϵ,r(Y)=R(Y)⋂ϵ⋃rRϵ,r(Y)=R(Y) such that each of the Reifenberg sets  Rϵ,r(Y)Rϵ,r(Y) is bihölder homeomorphic to a manifold. It has been an ongoing question as to the bilipschitz regularity the Reifenberg sets. Our results have two parts in this paper. First we show that each of the sets Rϵ,r(Y)Rϵ,r(Y) are bilipschitz embeddable into Euclidean space. Conversely, we show the bilipschitz nature of the embedding is sharp. In fact, we construct a limit space Y which is even uniformly Reifenberg, that is, not only is each tangent cone of Y   isometric to RnRn but convergence to the tangent cones is at a uniform rate in Y  , such that there exist no C1,βC1,β embeddings of Y   into Euclidean space for any β>0β>0. Further, despite the strong tangential regularity of Y  , there exists a point y∈Yy∈Y such that every pair of minimizing geodesics beginning at y branches to any order at y. More specifically, given any   two unit speed minimizing geodesics γ1γ1, γ2γ2 beginning at y and any  0⩽θ⩽π0⩽θ⩽π, there exists a sequence ti→0ti→0 such that the angle ∠γ1(ti)yγ2(ti)∠γ1(ti)yγ2(ti) converges to θ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 249, 20 December 2013, Pages 348–358
نویسندگان
, ,