کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666002 | 1633848 | 2013 | 33 صفحه PDF | دانلود رایگان |

We study curvatures of homogeneous Randers spaces. After deducing the coordinate-free formulas of the flag curvature and Ricci scalar of homogeneous Randers spaces, we give several applications. We first present a direct proof of the fact that a homogeneous Randers space is Ricci quadratic if and only if it is a Berwald space. We then prove that any left invariant Randers metric on a non-commutative nilpotent Lie group must have three flags whose flag curvature is positive, negative and zero, respectively. This generalizes a result of J.A. Wolf on Riemannian metrics. We prove a conjecture of J. Milnor on the characterization of central elements of a real Lie algebra, in a more generalized sense. Finally, we study homogeneous Finsler spaces of positive flag curvature and particularly prove that the only compact connected simply connected Lie group admitting a left invariant Finsler metric with positive flag curvature is SU(2)SU(2).
Journal: Advances in Mathematics - Volume 240, 20 June 2013, Pages 194–226