کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666003 1633848 2013 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Hilbert operators on weighted Bergman spaces
ترجمه فارسی عنوان
اپراتورهای هیلبرت را در فضاهای بزرگ برگمن به کار برید؟
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

The main purpose of this paper is to study the generalized Hilbert operator Hg(f)(z)=∫01f(t)g′(tz)dt acting on the weighted Bergman space Aωp, where the weight function ωω belongs to the class RR of regular radial weights and satisfies the Muckenhoupt type condition equation(††)sup0≤r<1(∫r1(∫t1ω(s)ds)−p′pdt)pp′∫0r(1−t)−p(∫t1ω(s)ds)dt<∞. If q=pq=p, the condition on gg that characterizes the boundedness (or the compactness) of Hg:Aωp→Aωq depends on pp only, but the situation is completely different in the case q≠pq≠p in which the inducing weight ωω plays a crucial role. The results obtained also reveal a natural connection to the Muckenhoupt type condition (††). Indeed, it is shown that the classical Hilbert operator (the case g(z)=log11−z of HgHg) is bounded from L∫t1ω(s)dsp([0,1)) (the natural restriction of Aωp to functions defined on [0,1)[0,1)) to Aωp if and only if ωω satisfies the condition (††). On the way to these results decomposition norms for the weighted Bergman space Aωp are established.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 240, 20 June 2013, Pages 227–267
نویسندگان
, ,