کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666040 1633846 2013 49 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The moduli space of twisted holomorphic maps with Lagrangian boundary condition: Compactness
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The moduli space of twisted holomorphic maps with Lagrangian boundary condition: Compactness
چکیده انگلیسی

Let (X,ω)(X,ω) be a compact symplectic manifold and LL be a compact Lagrangian submanifold. Suppose that (X,L)(X,L) has a Hamiltonian S1S1 action with moment map μμ. Take an S1S1-invariant, ωω-compatible almost complex structure, and we consider tuples (C,P,A,φ)(C,P,A,φ) where CC is a smooth bordered Riemann surface of fixed topological type, P→CP→C is an S1S1-principal bundle, AA is a connection on PP and φφ is a section of P×S1XP×S1X satisfying ∂¯Aφ=0,ινFA+μ(φ)=c with boundary condition φ(∂C)⊂P×S1Lφ(∂C)⊂P×S1L. Here FAFA is the curvature of AA and νν is a volume form on CC and c∈iRc∈iR is a constant. We compactify the moduli space of isomorphism classes of such objects with energy ≤K≤K, where the energy is defined to be the Yang–Mills–Higgs functional ‖FA‖L22+‖dAφ‖L22+‖μ(φ)−c‖L22. This generalizes the compactness theorem of Mundet–Tian (2009) [17] in the case of closed Riemann surfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 242, 1 August 2013, Pages 1–49
نویسندگان
,