کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666137 1345389 2013 69 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Willmore spheres in compact Riemannian manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Willmore spheres in compact Riemannian manifolds
چکیده انگلیسی

The paper is devoted to the variational analysis of the Willmore and other L2L2 curvature functionals, among immersions of 2-dimensional surfaces into a compact Riemannian m-manifold (Mm,h)(Mm,h) with m>2m>2. The goal of the paper is two-fold, on one hand, we give the right setting for doing the calculus of variations (including minmax methods) of such functionals for immersions into manifolds and, on the other hand, we prove the existence results for possibly branched Willmore spheres under various constraints (prescribed homotopy class, prescribed area) or under curvature assumptions for MmMm. To this aim, using the integrability by compensation theory, we first establish the regularity for the critical points of such functionals. We then prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that, for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere into MmMm realizing a connected family of conformal smooth (possibly branched) area constrained Willmore spheres (as explained in the introduction, this comes as a natural extension of the minimal immersed spheres in homotopy class constructed by Sacks and Uhlenbeck (1981) in, [38], in situations when they do not exist). Moreover, for every A>0A>0 we minimize the Willmore functional among connected families of weak, possibly branched, immersions of the 2-sphere having prescribed total area equal to AA and we prove full regularity for the minimizer. Finally, under a mild curvature condition on (Mm,h)(Mm,h), we minimize the sum of the area with the square of the L2L2 norm of the second fundamental form, among weak possibly branched immersions of the two spheres and we prove the regularity of the minimizer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 232, Issue 1, 15 January 2013, Pages 608–676
نویسندگان
, ,