کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666152 1633854 2013 165 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Wall-crossing, Hitchin systems, and the WKB approximation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Wall-crossing, Hitchin systems, and the WKB approximation
چکیده انگلیسی

We consider BPS states in a large class of d=4d=4, N=2N=2 field theories, obtained by reducing six-dimensional (2,0)(2,0) superconformal field theories on Riemann surfaces, with defect operators inserted at points of the Riemann surface. Further dimensional reduction on S1S1 yields sigma models, whose target spaces are moduli spaces of Higgs bundles on Riemann surfaces with ramification. In the case where the Higgs bundles have rank 2, we construct canonical Darboux coordinate systems on their moduli spaces. These coordinate systems are related to one another by Poisson transformations associated to BPS states, and have well-controlled asymptotic behavior, obtained from the WKB approximation. The existence of these coordinates implies the Kontsevich–Soibelman wall-crossing formula for the BPS spectrum. This construction provides a concrete realization of a general physical explanation of the wall-crossing formula which was proposed in Gaiotto et al. [40]. It also yields a new method for computing the spectrum using the combinatorics of triangulations of the Riemann surface.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 234, 15 February 2013, Pages 239–403
نویسندگان
, , ,