کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666160 1633854 2013 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Products of conjugacy classes in finite and algebraic simple groups
ترجمه فارسی عنوان
محصولات کلاس های همجوشی در گروه های ساده و جبری ساده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

We prove the Arad–Herzog conjecture for various families of finite simple groups — if AA and BB are nontrivial conjugacy classes, then ABAB is not a conjugacy class. We also prove that if GG is a finite simple group of Lie type and AA and BB are nontrivial conjugacy classes, either both semisimple or both unipotent, then ABAB is not a conjugacy class. We also prove a strong version of the Arad–Herzog conjecture for simple algebraic groups and in particular show that almost always the product of two conjugacy classes in a simple algebraic group consists of infinitely many conjugacy classes. As a consequence we obtain a complete classification of pairs of centralizers in a simple algebraic group which have dense product. A special case of this has been used by Prasad to prove a uniqueness result for Tits systems in quasi-reductive groups. Our final result is a generalization of the Baer–Suzuki theorem for pp-elements with p≥5p≥5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 234, 15 February 2013, Pages 618–652
نویسندگان
, , ,