کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666366 | 1345400 | 2012 | 25 صفحه PDF | دانلود رایگان |

We study local G-shtukas with level structure over a base scheme whose Newton polygons are constant on the base. We show that after a finite base change and after passing to an étale covering, such a local G-shtuka is isogenous to a completely slope divisible one, generalizing corresponding results for p-divisible groups by Oort and Zink. As an application we establish a product structure up to finite surjective morphism on the closed Newton stratum of the universal deformation of a local G-shtuka, similarly to Oortʼs foliations for p-divisible groups and abelian varieties. This also yields bounds on the dimensions of affine Deligne–Lusztig varieties and proves equidimensionality of affine Deligne–Lusztig varieties in the affine Grassmannian.
Journal: Advances in Mathematics - Volume 229, Issue 1, 15 January 2012, Pages 54-78