کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666370 1345400 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Criteria for rational smoothness of some symmetric orbit closures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Criteria for rational smoothness of some symmetric orbit closures
چکیده انگلیسی

Let G be a connected reductive linear algebraic group over C with an involution θ. Denote by K the subgroup of fixed points. In certain cases, the K-orbits in the flag variety G/B are indexed by the twisted identities ι={θ(w−1)w|w∈W} in the Weyl group W. Under this assumption, we establish a criterion for rational smoothness of orbit closures which generalises classical results of Carrell and Peterson for Schubert varieties. That is, whether an orbit closure is rationally smooth at a given point can be determined by examining the degrees in a “Bruhat graph” whose vertices form a subset of ι. Moreover, an orbit closure is rationally smooth everywhere if and only if its corresponding interval in the Bruhat order on ι is rank symmetric.In the special case K=Sp2n(C), G=SL2n(C), we strengthen our criterion by showing that only the degree of a single vertex, the “bottom one”, needs to be examined. This generalises a result of Deodhar for type A Schubert varieties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 1, 15 January 2012, Pages 183-200