کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666382 1345400 2012 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some degenerations of Kazhdan–Lusztig ideals and multiplicities of Schubert varieties
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Some degenerations of Kazhdan–Lusztig ideals and multiplicities of Schubert varieties
چکیده انگلیسی

We study Hilbert–Samuel multiplicity for points of Schubert varieties in the complete flag variety, by Gröbner degenerations of the Kazhdan–Lusztig ideal. In the covexillary case, we give a manifestly positive combinatorial rule for multiplicity by establishing (with a Gröbner basis) a reduced limit whose Stanley–Reisner simplicial complex is homeomorphic to a shellable ball or sphere. We show that multiplicity counts the number of facets of this complex. We also obtain a formula for the Hilbert series of the local ring. In particular, our work gives a multiplicity rule for Grassmannian Schubert varieties, providing alternative statements and proofs to formulae of Lakshmibai and Weyman (1990) [26], , Rosenthal and Zelevinsky (2001) [37], , Krattenthaler (2001) [22], , Kodiyalam and Raghavan (2003) [21], , Kreiman and Lakshmibai (2004) [24], , Ikeda and Naruse (2009) [13], and Woo and Yong (2009) [40]. We suggest extensions of our methodology to the general case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 1, 15 January 2012, Pages 633-667