کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666394 1345401 2012 64 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tropical analytic geometry, Newton polygons, and tropical intersections
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Tropical analytic geometry, Newton polygons, and tropical intersections
چکیده انگلیسی

In this paper we use the connections between tropical algebraic geometry and rigid-analytic geometry in order to prove two main results. We use tropical methods to prove a theorem about the Newton polygon for convergent power series in several variables: if f1,…,fn are n convergent power series in n variables with coefficients in a non-Archimedean field K, we give a formula for the valuations and multiplicities of the common zeros of f1,…,fn. We use rigid-analytic methods to show that stable complete intersections of tropical hypersurfaces compute algebraic multiplicities even when the intersection is not tropically proper. These results are naturally formulated and proved using the theory of tropicalizations of rigid-analytic spaces, as introduced by Einsiedler, Kapranov, and Lind (2006) [14], and Gubler (2007) [20]. We have written this paper to be as readable as possible both to tropical and arithmetic geometers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 6, 1 April 2012, Pages 3192-3255