کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666408 1345402 2012 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Homological mirror symmetry for curves of higher genus
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Homological mirror symmetry for curves of higher genus
چکیده انگلیسی

This paper is devoted to homological mirror symmetry conjecture for curves of higher genus. It was proposed by Katzarkov as a generalization of original Kontsevichʼs conjecture.A version of this conjecture in the case of the genus two curve was proved by Seidel [25]. Based on the paper of Seidel, we prove the conjecture (in the same version) for curves of genus g⩾3. Namely, we relate the Fukaya category of a genus g curve to the category of singularities of zero fiber in the mirror dual Landau–Ginzburg model.We also prove a kind of reconstruction theorem for hypersurface singularities. Namely, formal type of hypersurface singularity (i.e. a formal power series up to a formal change of variables) can be reconstructed, with some technical assumptions, from its D(Z/2)-G category of Landau–Ginzburg branes. The precise statement is Theorem 1.2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 230, Issue 2, 1 June 2012, Pages 493-530