کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666424 1345403 2012 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dunkl shift operators and Bannai–Ito polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Dunkl shift operators and Bannai–Ito polynomials
چکیده انگلیسی

We consider the most general Dunkl shift operator L with the following properties: (i) L is of first order in the shift operator and involves reflections; (ii) L preserves the space of polynomials of a given degree; (iii) L is potentially self-adjoint. We show that under these conditions, the operator L has eigenfunctions which coincide with the Bannai–Ito polynomials. We construct a polynomial basis which is lower-triangular and two-diagonal with respect to the action of the operator L. This allows to express the BI polynomials explicitly. We also present an anti-commutator AW(3) algebra corresponding to this operator. From the representations of this algebra, we derive the structure and recurrence relations of the BI polynomials. We introduce new orthogonal polynomials – referred to as the complementary BI polynomials – as an alternative q→−1 limit of the Askey–Wilson polynomials. These complementary BI polynomials lead to a new explicit expression for the BI polynomials in terms of the ordinary Wilson polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 4, 1 March 2012, Pages 2123-2158