کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666497 1345407 2011 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Wall crossings for double Hurwitz numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Wall crossings for double Hurwitz numbers
چکیده انگلیسی

Double Hurwitz numbers count covers of P1 by genus g curves with assigned ramification profiles over 0 and ∞, and simple ramification over a fixed branch divisor. Goulden, Jackson and Vakil have shown double Hurwitz numbers are piecewise polynomial in the orders of ramification (Goulden et al., 2005) [10], , and Shadrin, Shapiro and Vainshtein have determined the chamber structure and wall crossing formulas for g=0 (Shadrin et al., 2008) [15], . This paper gives a unified approach to these results and strengthens them in several ways — the most important being the extension of the results of Shadrin et al. (2008) [15] to arbitrary genus.The main tool is the authorsʼ previous work (Cavalieri et al., 2010) [6], expressing double Hurwitz number as a sum over certain labeled graphs. We identify the labels of the graphs with lattice points in the chambers of certain hyperplane arrangements, which give rise to piecewise polynomial functions. Our understanding of the wall crossing for these functions builds on the work of Varchenko (1987) [17], and could have broader applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 228, Issue 4, 10 November 2011, Pages 1894-1937