کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666505 1345407 2011 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability in the Busemann–Petty and Shephard problems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Stability in the Busemann–Petty and Shephard problems
چکیده انگلیسی

A comparison problem for volumes of convex bodies asks whether inequalities fK(ξ)⩽fL(ξ) for all ξ∈Sn−1 imply that Voln(K)⩽Voln(L), where K, L are convex bodies in Rn, and fK is a certain geometric characteristic of K. By linear stability in comparison problems we mean that there exists a constant c such that for every ε>0, the inequalities fK(ξ)⩽fL(ξ)+ε for all ξ∈Sn−1 imply that .We prove such results in the settings of the Busemann–Petty and Shephard problems and their generalizations. We consider the section function fK(ξ)=SK(ξ)=Voln−1(K∩ξ⊥) and the projection function fK(ξ)=PK(ξ)=Voln−1(K|ξ⊥), where ξ⊥ is the central hyperplane perpendicular to ξ, and K|ξ⊥ is the orthogonal projection of K to ξ⊥. In these two cases we prove linear stability under additional conditions that K is an intersection body or L is a projection body, respectively. Then we consider other functions fK, which allow to remove the additional conditions on the bodies in higher dimensions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 228, Issue 4, 10 November 2011, Pages 2145-2161