کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666526 1345408 2012 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Higher index theory for certain expanders and Gromov monster groups, I
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Higher index theory for certain expanders and Gromov monster groups, I
چکیده انگلیسی

In this paper, the first of a series of two, we continue the study of higher index theory for expanders. We prove that if a sequence of graphs is an expander and the girth of the graphs tends to infinity, then the coarse Baum–Connes assembly map is injective, but not surjective, for the associated metric space X.Expanders with this girth property are a necessary ingredient in the construction of the so-called ‘Gromov monster’ groups that (coarsely) contain expanders in their Cayley graphs. We use this connection to show that the Baum–Connes assembly map with certain coefficients is injective but not surjective for these groups. Using the results of the second paper in this series, we also show that the maximal Baum–Connes assembly map with these coefficients is an isomorphism.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 3, 15 February 2012, Pages 1380-1416