کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666527 1345408 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of measures under diagonal actions on homogeneous spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Convergence of measures under diagonal actions on homogeneous spaces
چکیده انگلیسی

Let λ be a probability measure on Tn−1 where n=2 or 3. Suppose λ is invariant, ergodic and has positive entropy with respect to the linear transformation defined by a hyperbolic matrix. We get a measure μ on SLn(Z)\SLn(R) by putting λ on some unstable horospherical orbit of the right translation of at=diag(et,…,et,e−(n−1)t) (t>0). We prove that if the average of μ with respect to the flow at has a limit, then it must be a scalar multiple of the probability Haar measure. As an application we show that if the entropy of λ is large, then Dirichletʼs theorem is not improvable λ almost surely.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 3, 15 February 2012, Pages 1417-1434