کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666567 | 1345410 | 2011 | 105 صفحه PDF | دانلود رایگان |

Let Q be a finite quiver without oriented cycles, let Λ be the associated preprojective algebra, let g be the associated Kac–Moody Lie algebra with Weyl group W, and let n be the positive part of g. For each Weyl group element w, a subcategory Cw of mod(Λ) was introduced by Buan, Iyama, Reiten and Scott. It is known that Cw is a Frobenius category and that its stable category is a Calabi–Yau category of dimension two. We show that Cw yields a cluster algebra structure on the coordinate ring C[N(w)] of the unipotent group N(w):=N∩(w−1N−w). Here N is the pro-unipotent pro-group with Lie algebra the completion of n. One can identify C[N(w)] with a subalgebra of , the graded dual of the universal enveloping algebra U(n) of n. Let S⁎ be the dual of Lusztigʼs semicanonical basis S of U(n). We show that all cluster monomials of C[N(w)] belong to S⁎, and that S⁎∩C[N(w)] is a C-basis of C[N(w)]. Moreover, we show that the cluster algebra obtained from C[N(w)] by formally inverting the generators of the coefficient ring is isomorphic to the algebra C[Nw] of regular functions on the unipotent cell Nw of the Kac–Moody group with Lie algebra g. We obtain a corresponding dual semicanonical basis of C[Nw]. As one application we obtain a basis for each acyclic cluster algebra, which contains all cluster monomials in a natural way.
Journal: Advances in Mathematics - Volume 228, Issue 1, 10 September 2011, Pages 329-433