کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666583 | 1345411 | 2011 | 13 صفحه PDF | دانلود رایگان |

We prove inequalities for mixed volumes of zonoids with isotropic generating measures. A special case is an inequality for zonoids that is reverse to the generalized Urysohn inequality, between mean width and another intrinsic volume; here the equality case characterizes parallelepipeds. We apply this to a question from stochastic geometry. It is known that among the stationary Poisson hyperplane processes of given positive intensity in n-dimensional Euclidean space, the ones with rotation invariant distribution are characterized by the fact that they yield, for k∈{2,…,n}, the maximal intensity of the intersection process of order k. We show that, if the kth intersection density is measured in an affine-invariant way, the processes of hyperplanes with only n fixed directions are characterized by a corresponding minimum property.
Journal: Advances in Mathematics - Volume 228, Issue 5, 1 December 2011, Pages 2634-2646