کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666595 1345411 2011 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The conjugate heat equation and Ancient solutions of the Ricci flow
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The conjugate heat equation and Ancient solutions of the Ricci flow
چکیده انگلیسی

We prove Gaussian type bounds for the fundamental solution of the conjugate heat equation evolving under the Ricci flow. As a consequence, for dimension 4 and higher, we show that the backward limit of Type I κ-solutions of the Ricci flow must be a non-flat gradient shrinking Ricci soliton. This extends Perelmanʼs previous result on backward limits of κ-solutions in dimension 3, in which case the curvature operator is nonnegative (it follows from Hamilton–Ivey curvature pinching estimate). As an application, this also addresses an issue left in Naber (2010) [23], where Naber proves the interesting result that there exists a Type I dilation limit that converges to a gradient shrinking Ricci soliton, but that soliton might be flat. The Gaussian bounds that we obtain on the fundamental solution of the conjugate heat equation under evolving metric might be of independent interest.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 228, Issue 5, 1 December 2011, Pages 2891-2919