کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666633 | 1345413 | 2011 | 36 صفحه PDF | دانلود رایگان |

This article provides sharp constructive upper and lower bound estimates for the Boltzmann collision operator with the full range of physical non-cut-off collision kernels (γ>−n and s∈(0,1)) in the trilinear L2(Rn) energy 〈Q(g,f),f〉. These new estimates prove that, for a very general class of g(v), the global diffusive behavior (on f) in the energy space is that of the geometric fractional derivative semi-norm identified in the linearized context in our earlier works (Gressman and Strain, 2010 [15], , 2011 [16]). We further prove new global entropy production estimates with the same anisotropic semi-norm. This resolves the longstanding, widespread heuristic conjecture about the sharp diffusive nature of the non-cut-off Boltzmann collision operator in the energy space L2(Rn).
Journal: Advances in Mathematics - Volume 227, Issue 6, 20 August 2011, Pages 2349-2384