کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666662 1345415 2011 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zariski closures of reductive linear differential algebraic groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Zariski closures of reductive linear differential algebraic groups
چکیده انگلیسی

Linear differential algebraic groups (LDAGs) appear as Galois groups of systems of linear differential and difference equations with parameters. These groups measure differential-algebraic dependencies among solutions of the equations. LDAGs are now also used in factoring partial differential operators. In this paper, we study Zariski closures of LDAGs. In particular, we give a Tannakian characterization of algebraic groups that are Zariski closures of a given LDAG. Moreover, we show that the Zariski closures that correspond to representations of minimal dimension of a reductive LDAG are all isomorphic. In addition, we give a Tannakian description of simple LDAGs. This substantially extends the classical results of P. Cassidy and, we hope, will have an impact on developing algorithms that compute differential Galois groups of the above equations and factoring partial differential operators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 227, Issue 3, 20 June 2011, Pages 1195-1224