کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666675 1345416 2011 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The generalized Chern conjecture for manifolds that are locally a product of surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
The generalized Chern conjecture for manifolds that are locally a product of surfaces
چکیده انگلیسی

We consider closed manifolds that admit a metric locally isometric to a product of symmetric planes. For such manifolds, we prove that the Euler characteristic is an obstruction to the existence of flat structures, confirming an old conjecture proved by Milnor in dimension 2. In particular, the Chern conjecture follows in these cases. The proof goes via a new sharp Milnor–Wood inequality for Riemannian manifolds that are locally a product of hyperbolic planes. Furthermore, we analyze the possible flat vector bundles over such manifolds. Over closed Hilbert–Blumenthal modular varieties, we show that there are finitely many flat structures with nonzero Euler number and none of them corresponds to the tangent bundle. Some of the main results were announced in [M. Bucher, T. Gelander, Milnor–Wood inequalities for manifolds locally isometric to a product of hyperbolic planes, C. R. Acad. Sci. Paris Ser. I 346 (2008) 661–666].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 228, Issue 3, 20 October 2011, Pages 1503-1542