کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4666742 | 1345419 | 2011 | 72 صفحه PDF | دانلود رایگان |

We develop the concept of integral Menger curvature for a large class of nonsmooth surfaces. We prove uniform Ahlfors regularity and a C1,λ-a priori bound for surfaces for which this functional is finite. In fact, it turns out that there is an explicit length scale R>0 which depends only on an upper bound E for the integral Menger curvature Mp(Σ) and the integrability exponent p, and not on the surface Σ itself; below that scale, each surface with energy smaller than E looks like a nearly flat disc with the amount of bending controlled by the (local) Mp-energy. Moreover, integral Menger curvature can be defined a priori for surfaces with self-intersections or branch points; we prove that a posteriori all such singularities are excluded for surfaces with finite integral Menger curvature. By means of slicing and iterative arguments we bootstrap the Hölder exponent λ up to the optimal one, λ=1−(8/p), thus establishing a new geometric ‘Morrey–Sobolev’ imbedding theorem.As two of the various possible variational applications we prove the existence of surfaces in given isotopy classes minimizing integral Menger curvature with a uniform bound on area, and of area minimizing surfaces subjected to a uniform bound on integral Menger curvature.
Journal: Advances in Mathematics - Volume 226, Issue 3, 15 February 2011, Pages 2233-2304