کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666764 1345420 2011 56 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hopf monads on monoidal categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Hopf monads on monoidal categories
چکیده انگلیسی

We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode.Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid.Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C. The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras).We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 227, Issue 2, 1 June 2011, Pages 745-800