کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
466679 | 697867 | 2012 | 14 صفحه PDF | دانلود رایگان |

Two new formulations, respectively denominated INT_M1 and INT_M2, of an integrated mathematical model to describe the glycemic and insulinemic responses to a 75 g oral glucose tolerance test (OGTT) are proposed and compared. The INT_M1 assumes a single compartment for the intestine and the derivative of a power exponential function for the gastric emptying rate, while, in the INT_M2, a nonlinear three-compartment system model is adopted to produce a more realistic, multiphase gastric emptying rate. Both models were implemented in a Matlab-based, two-step procedure for estimation of seven adjustable coefficients characterizing the gastric emptying rate and the incretin, insulin and glucose kinetics. Model behaviour was tested vs. mean plasma glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucose and insulin measurements from two different laboratories, where glycemic profiles observed during a 75 g OGTT were matched in healthy subjects (HC1- and HC2-group, respectively) by means of an isoglycemic intravenous glucose (I-IVG) infusion. Under the hypothesis of an additive effect of GLP-1 and GIP on insulin potentiation, our results demonstrated a substantial equivalence of the two models in matching the data. Model parameter estimates showed to be suitable markers of differences observed in the OGTT and matched I-IVG responses from the HC1-group compared to the HC2-group. Model implementation in our two-step parameter estimation procedure enhances the possibility of a prospective application for individualization of the incretin effect in a single subject, when his/her data are plugged in.
► An improved mathematical model of a 75 g oral glucose tolerance test is proposed.
► Effects of two alternative representations of glucose absorption are compared.
► Model behavior is tested vs. mean GLP-1, GIP, glucose and insulin data.
► A Matlab-based two-step procedure allows estimation of seven free parameters.
► Model parameter estimates show to be suitable markers of insulin potentiation.
Journal: Computer Methods and Programs in Biomedicine - Volume 107, Issue 2, August 2012, Pages 248–261