کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666794 1345421 2011 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Higher integrality conditions, volumes and Ehrhart polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Higher integrality conditions, volumes and Ehrhart polynomials
چکیده انگلیسی

A polytope is integral if all of its vertices are lattice points. The constant term of the Ehrhart polynomial of an integral polytope is known to be 1. In previous work, we showed that the coefficients of the Ehrhart polynomial of a lattice-face polytope are volumes of projections of the polytope. We generalize both results by introducing a notion of k-integral polytopes, where 0-integral is equivalent to integral. We show that the Ehrhart polynomial of a k-integral polytope P has the properties that the coefficients in degrees less than or equal to k are determined by a projection of P, and the coefficients in higher degrees are determined by slices of P. A key step of the proof is that under certain generality conditions, the volume of a polytope is equal to the sum of volumes of slices of the polytope.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 226, Issue 4, 1 March 2011, Pages 3467-3494