کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666818 1345422 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An “almost” full embedding of the category of graphs into the category of groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
An “almost” full embedding of the category of graphs into the category of groups
چکیده انگلیسی

We construct a functor F:Graphs→Groups which is faithful and “almost” full, in the sense that every nontrivial group homomorphism FX→FY is a composition of an inner automorphism of FY and a homomorphism of the form Ff, for a unique map of graphs f:X→Y. When F is composed with the Eilenberg–Mac Lane space construction K(FX,1) we obtain an embedding of the category of graphs into the unpointed homotopy category which is full up to null-homotopic maps.We provide several applications of this construction to localizations (i.e. idempotent functors); we show that the questions:(1)Is every orthogonality class reflective?(2)Is every orthogonality class a small-orthogonality class? have the same answers in the category of groups as in the category of graphs. In other words they depend on set theory: (1) is equivalent to weak Vopěnka's principle and (2) to Vopěnka's principle. Additionally, the second question, considered in the homotopy category, is also equivalent to Vopěnka's principle.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 225, Issue 4, 10 November 2010, Pages 1893-1913